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Vector Quantization of Images Using Modified
Adaptive Resonance Algorithm for Hierarchical
Clustering

Natalija Vlajic and Howard C. Card-ellow, IEEE

Abstract—Most neural-network (NN) algorithms used for the  transform each transfonm each
purpose of vector quantization (VQ) focus on the mean squared f;,‘:,;“;g:,;,";; find closast for each index | comesponding
error minimization within the reference- or code-vector space. This vector :ﬁ:ﬁf}iﬁ; clnalts sub-mage /
feature frequently causes increased entropy of the information con- & send its index
tained in the quantizer (NN), leading to a number of disadvantages, codebook »| codebook
including more apparent distortion and more demanding trans- r channel
mission. A modified adaptive resonance theory (ART2) learning image reconstructed
algorithm, which we employ in this paper, belongs to the family { } E { } code image
of NN algorithms whose main goal is the discovery of input data index vector
clusters, without considering their actual size. This feature makes encoder decoder

the modified ART2 algorithm very convenient for image compres-
sion tasks, particularly when dealing with images with large back-
ground areas containing few details. Moreover, due to the ability to
produce hierarchical quantization (clustering), the modified ART2

algorithm is proven to significantly reduce the computation time The design and operation of a VQ system is based on the fol-
required for coding, and therefore enhance the overall compres-

sion process. Examples of the results obtained are presented in thelOW,ing principles. First, a limited set Qf vectorso(de-vector
paper, suggesting the benefits of using this algorithm for the pur- which are assumed to be representatives of all such data ensem-

pose of VQ, i.e., image compression, over the other NN learning bles that might be generated from the source, are chosen in order

Fig. 1. Vector quantization for image compression.

algorithms. to form thecodebookThe codebook is known to both the VQ
Index Terms—Data processing, image Cc)mpressic)nl unsuper- encoder and decoder. In order to be processed by the SyStem,
vised neural network (NN) learning. every data stream coming from the source has to be grouped

into blocks or vectors of the code-vector dimensionality. For

every input data block the nearest code-vector is selected (this

process is called thencoding phageand only the index of that
ECTOR quantization (VQ) is known to be a very usefutode-vector is transmitted through the channel. On the other side
technique in lossy data compression. In general, compresgthe channel, since the decoder has exactly the same codebook,

sion techniques fall into two main classésssless compres- the original code-vectors can be easily retrieved. This process is

sion, although it allows a perfect reconstruction of the originatalled thedecoding phasesince it enables the reconstruction of

information, has very limited ability to reduce the amount ohe original input data set.

data.Lossy compressioon the other hand, is much more effec- The size of the codebook is usually of the fo2A, whereN

tive, but ineVitably leads to some distortion when information i% an integer number. Accordinglw represents the number of

decompressed. From this perspective, the main advantage of M3 required to encode each code-vector, i.e., its index. Further-

over the other lossy compression techniques is that it explojfpre, if the code- and input vectors are of dimensionalitythe

the structure underlying a given data set and thereby PfOViCtQﬁnpression ratio obtained by the systenvj§\/ [bits/samplg

a lower level of distortion for a given compression rate, i.ey is apparent that either by using a codebook with fewer code-

number of bits per sample, as compared to many other methagsstors or by employing code-vectors, i.e., input data blocks,

This is especially the case if data is significantly correlated, §f |arger dimensionality, a better (greater) compression ratio

in other words, if data ensembles (groups of data points) tendigh be achieved. However, the distortion of input data tends to

fall in clusters. increase as the compression ratio increases, and therefore the

values chosen foN and M are supposed to provide a certain
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ratio (SNR). Although the mse and SNR can provide an ob- Px(x) 4
jective analysis of the quality of compression from a technical,
or mathematical, point of view, they do not always correspond
to the quality standards of human perception. Therefore, the
judgment on the performance of a VQ system has to incorpo-
rate both objective mathematical and subjective human percep-
tion-related measures.

Various techniques have been proposed and used for the X
purpose of _codebool§ creation, including several neural netwq;ilé_ 2. Probability density function of a given dataset.
(NN) learning algorithms. It can be observed that all these
techniques mainly focus on the mse minimization within the Px(X) A
codebook vector space, thereby attempting to increase the av-
erage information per node, i.e., quantization level, in the sense
of Shannon’s entropy. In this paper we argue that for datasets,
particularly images, uncorrupted with noise and of nonuniform
block-vector (subimage) distribution, large Shannon’s average
information per node, i.e., Shannon’s entropy, is not an ap-
propriate goal. Instead, large average information in the sense
of arithmetic mean seems to be more related to the quality of <« —>
decompressed data, and therefore a more suitable goal. Our o 1) (Quontaton oo 2
modified ART2 algorithm is an NN learning algorithm whose
primary aim is not the mse minimization within the wholdig. 3. Quantization focused on the discovery of the main input data clusters.
reference vector (code-vector) space, as is the case with some
other NN algorithms. Instead it focuses on the discovery of the., their reference vectors. Since the positions of the reference
main clusters while minimizing the mse within each of thenvectors are determined by the nature of the learning algorithm
In the following sections we show that the modified ART2applied, various NN learning algorithms may result in signifi-
having the ability to produce hierarchical clustering insensitiveantly different clusterings for the same dataset.
to nonuniform variations in the input data distribution, offers o ) .
several advantages over the other NN learning algorithms/n Quantization Using Algorithms for Input Data Cluster
terms of vector quantization and coding for image compressidAScovery

Fig. 3 illustrates one possible clustering obtained for the
dataset presented in Fig. 2. Theoretically, such clustering could
be provided by a neural network algorithm capable of discov-

Let us assume a very simple case, as presented in Fig. 2. ®igg the main input data clusters. In particular, this means
dataset consists of one-dimensional data-points, and thesetl@ the algorithm, both during the learning and testing phase,
grouped into two main clusters. The corresponding distributi@locates the same winning node to sufficiently similar (close)
density, i.e., the probability density function (pdf), is considefaput vectors only, independent of the input data distribution
ably larger within one than within the other cluster. Concept@ensity. It has been proven that adaptive resonance theory
ally, this distribution could be conceived as an analogy to t§ART) [1], and as a result modified ART (ART2) [2], satisfy
subimage distribution obtained by subdividing an image ofthese requirements, and therefore should be able to provide
fairly uniform background with a few important foreground declustering as given in Fig. 3.
tails (see Fig. 8). For a better understanding of the following If we define the probability of a node with the respegtféz)
discussion, it has to be emphasized that for the case of sih
an image, although the details present a small portion of the

cluster 2

cluster 1

cluster 2

cluster1 .

node 1 node 2 X

»

Il. THEORETICAL BACKGROUND

overall data and statistically are almost negligible compared to Prodei = /  pe(z)dx 1)
the background, they actually may contain nearly all important Veronoireg. 4
information that the image carries. [in general,p.(z) annotates the pdf of code-vectors obtained

Now, let us further assume that the dataset presented in Figny2sampling an image] and accordingly the information content
is used as a training set for a two-node NN, which is supposttht corresponds to that node by
to operate as a quantizer. This implies that after the training
is performed, the NN will be capable of classifying the data Todei = log
into two mutually disjoint groups, such that each group consists Proded
only of the data-points placed within the Voronoi region of on@ € set of nodes) then for the case of Fidp3de 1 < Pnode 2,
of the nodes. In other words, for all data-points of one partiendI,.ode1 > Inodez- This implies that an NN algorithm ca-
ular group the same node, i.e., its reference vector, presentsghble of clustering in the manner illustrated in Fig. 3 results
closest quantization level. in node positions, probabilities, and information content which
In general, classification, or quantization, obtained by an Niday accurately indicate the positions, probabilities, and infor-
is uniquely and exclusively defined by the positions of its nodesyation content of the actual clusters.

)
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For the sake of the following discussion, let us emphasize that Px(X) A
due to the properties

cluster 2

U Voronoireg.i = R" 3)

i€set of nodes

cluster 1
and e
node 1 I'node 2 x
pa(z) =1 4 !

/ " =(2) < i >

) ) ) Voronoi region 1 Voronoi region 2
obtained for any clustering, the following equation will hold: {quantization region 1) (quantization region 2)
Z Prodei = 1. (5) Fig. 4. Clustering influenced by the topology of input data.

1€set of nodes

L based on the minimum description length principle [6] focus
In general, an NN for vector quantization can be regardedgﬁ the mse (or expected quantization error) minimization. For

a secondary sourceyr asource to the channesm_ce th_e aC” the case of a continuous input data distributiquiz ), or for a
tual outcome from the encoder to the channel (Fig. 1) is sim ite input dataseD, mses are given in (8), respectively
the set of reference vectors of the nodes. Accordingly, it makes

sense to define the entropy of such a source, and for the abov%MS _ Z / |z — wi||*ps(z) dz
V

case the entropyH (S1)) would be i J Voronoireg. i
1
H(Sl) = Pnode IInodei + Pnode QInodeQ = ﬁ E § ||-TZJ - wz||2 (8)
— log 1 Paode? log 1 (6) iCset of nodes x;; € Voronoireg. i
= Pnode node .
’ node 1 Pnode 2

wherew; is the reference vector of node

Entropy, as given in (6), can be interpreted as the sum oflt has been shown that an NN algorithm with the mse mini-
the nodes’ self-information, weighted by the correspondingization within the reference vector space as its primary goal is
node probability. Accordingly, from a Shannon’s entropy poirgapable of positioning the nodes in the way that they match the
of view, the information content of node 1 (see Fig. 3), wheinput data distribution density [7]. Accordingly, the reference
weighted, might appear less important than the informatisectors (nodes) tend to be distributed such that they become
content of node 2. This approach to the estimation of averatygnners” with the same probability. In other words, Voronoi
information coming from a secondary source (of the type thatrisgions tend to contain the same number of input data-points.
being discussed in this section) is appropriate for the situationserefore, for example, if the input data is of a significantly
when the original dataset is noisy (such as an image corruptezhuniform distribution, most of the nodes will concentrate in
with random noise). In those cases node 1 might be conceivld vicinity of regions with large distribution density. (For more
simply as a representative of a cluster of meaningless datadetails on this property see [2].)
in other words data corrupted with noise. (A real noisy image Fig. 4 illustrates data-point quantization or clustering of the
would have many clusters of this sort.) Thus, the “weightingiataset presented in Fig. 2 obtained using an NN algorithm to
from equation (6) would have the purpose of suppressing therform a mse minimization. From the practical point of view,
information contained in “noisy nodes.” since the initial values of the reference vectors in this type of NN

However, as has already been mentioned, for images uncalgorithm are usually determined by the statistics of the input
rupted with noise, with large background areas and relativahata, it can be assumed that the learning procedure begins with
few important details, the above concept would be incorrect.oth nodes within cluster 2. However, later in the learning, due
more appropriate measure of the average information comitugbeing the winner for data-points from cluster 1, one of the
from a secondary source in these cases would be simply times (in our case node 1) gradually moves toward the posi-

arithmetic mean of node information, as given in (7) tion indicated in Fig. 4. The other node, node 2, remains within
1 1 1 cluster 2, since there are no other data points for which it could
Tam(S)) = = <10g + log ) . (7) bethewinner. Eventually, the learning terminates with the prob-

2 Prode1 Prode 2 ability of node 1 with respect tp,.(z) approaching the proba-

The average information from (7) can be seen to be a spediity of node 2 with respect tg..(x).

case of (6), assuming that all nodes (clusters) are consideredf; in this case when an NN algorithm for mse minimization
equally important. is employedyp’, .., andp’, ... are used to annotate the proba-

bilities of node 1 and 2 with respect tg.(z) [according to the
B. Quantization Using Algorithms for Input Data Density ~ definition given in (1)], then from the above discussion it fol-
Estimation lows that

Most of the currently used NN learning algorithms for vector
quantization, including standard (hard) and soft competitive
learning, self-organizing feature maps [3], growing and spliti.e., the learning algorithm tends to position node 1 in such a
ting elastic networks [4], neural gas networks [5] and networkegay thatp! ., andp. .., become as close as possible), and

pilode 1 pilode 2 (9)
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accordingly, with respect to the clustering concept from Sec-Accordingly

tion II-A,

Phiode2 =Pnode2 — Ap (10)
pilodel =Pnode 1 + Ap (11)

whereAp > 0. [Note: since an NN with only two nodes is

assumed, and the respective node probabilities always SU”brt%impIy
unity based on (5), then a new clustering policy that decreases

the probability of node 1 foAp inevitably implies an increase
of node 2 probability for the same amount.]

Based on the above equations, the entrdiyS-)) of a sec-
ondary source that produces a clustering such as that prese
in Fig. 4 is

1 1
H(SQ) :pilodel 1Og o + piwde? 1Og W
node 1 Prode2

— \Pnode + Ap)log ————
(p det p) gpnoclel‘i‘Ap

+ (pnode? - Ap) 1Og (12)

Pnode2 — Ap )

Furthermore, the difference betweHi(.5; ) (from Section 11-A)
andH (S>) can be expressed by

H(S1) — H(S2)

_ Pnodel + Ap Prnode2 — Ap
= Pnode1 IOg ———— + Pnode2 IOg -
Prnode 1 Prode2
A
+ Aplog Puode1 + AP (13)
Pnode2 — Ap

Now, due to the well-known inequalityg = < = — 1, we have
that

node + A
H(S)) — H(S5) < poodes (M _ 1)

Prode 1

Prode2 — Ap 1)
Prode 2

Prode1 +Ap

Prode2 — Ap

+ Pnode 2 <

T Ap ( 1) (14)

which further implies

H(S{)—H(S,) <A
(S)) — H(Sy) < p<pmde2—Ap

/
= Ap <p—;ﬂ°de1 - 1) : (15)

Prode2

Pnode 1 + Ap _ 1)

Since, according to (9p., ,qe1/Phoae2 — 1, the important
conclusion is that

In a similar fashion it can be proved that

Tam(Ss) — Iam(S7)
1 Pnode 1 1 N Pnode 2 (17)
2

=3 — log .
5 Pnode 1 + Ap 2 5 Pnode2 — Ap

Ap 1 1
— < = —
Iam(SQ) Iam(SI) -2 <p;10de2 2 pilodel> (18)
which forp!,  4e1/Phodez — 1 implies
Lam(S2) — Tam(51) <0 (29)
Lam(S2) < Tam(Sy). (20)

[Through more complex procedures (16) and (20) can readily
Rpeﬁxtended to arbitrary number of nodes, or clusters].

In practical terms (16) implies that the entropy of a secondary
source based on an algorithm for the mse minimization will al-
ways be greater than or equal to the entropy of a secondary
source that simply focuses on input data cluster discovery. How-
ever, based on the elaboration from Section II-A, large entropy
may be an appropriate goal only when input data is corrupted
with noise. In all other cases, such as the images treated in this
paper, large entropy may be entirely irrelevant. Moreover, it may
be an indicator of inadequate quantization.

In terms of coding, (16) suggests another disadvantage of al-
gorithms for mse minimization compared to algorithms for the
discovery of input data clusters. If we recall from information
theory [8], a lower bound on the entropy of a code (set of code-
words) used to encode the symbols of a source is the source
entropy itself, as in (21). (In the case of quantization by an NN,
source symbols are the reference vectors, while each codeword
is simply a binary symbol allocated to one of the source sym-
bols.)

H(C) = H(5) (21)

where H(S) is the source entropy, anH(C) is the corre-
sponding code entropy.

Let us further recall that, for a given code that is allowed to
have a variable codeword length, the code-entropy corresponds
to the average length of its codewords, giverbitg/symbd|[8].

This implies the following interpretation of (21): for a source

of a certain entropyH (5), it is theoretically possible to gen-
erate a corresponding code of average codeword length as low as
H(S). Undoubtedly, regarding the transmission, codes of lower
average codeword length are more efficient. With respect to the
above explanation, (16) shows that a secondary source based on
an algorithm for mse minimization tends to be more demanding
from the transmission point of view than a secondary source
based on an algorithm for the discovery of input data clusters,
without necessarily providing better compression.

Finally, (20) is additional proof of a potentially disadvanta-
geous utilization of algorithms for mse minimization. In partic-
ular, if we assume that for a given number of nodes the family
of algorithms presented in Section II-A is capable of matching
the probabilities of input data clusters in an optimal way, then
Iam, presents the optimal average information per node in the
sense of arithmetic mean. However, based on (20), the arith-
metic mean of node information that corresponds to the family
of algorithms presented in this section will always be less than,
or at most equal to, the optimal value.
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[ll. M ODIFIED ART2 VERSUSART?2 FOR VECTOR bers of categories for different input data distributions.) How-
QUANTIZATION PURPOSES ever, as has been explained in Section I, vector quantization
generally assumes codebooks to be of €%e which implies
ART, introduced in 1976 by Grossberg, is an unsupearequirement for same number of nodes in the network. There-
vised learning technique, partially based on the well-knowore, it may be very complicated if not impossible, requiring
winner-take-all concept, but also influenced by the st@&xtensive experimentation, to find the exact value of vigilance
bility-plasticity dilemma [1]. (For more on winner-take-allparameter which would correspond to the required number of
concepts see [2] or [9].) There are two main adaptive resedes for each particular input data distribution.
onance theory models: ART1 and ART2. While the ART1 The modified ART2 algorithm we employ is a neural learning
model is capable of stably learning binary input patterns, tlaggorithm based on the conceptual approach of ART2, while at
ART2 models show the same behavior for analog patternse same time overcoming the above mentioned problems. The
Since 8-bit gray-scale images consist of pixels that can tak@dified ART2 algorithm was originally developed for Web
any value between 0 and 255, vector quantization for imagege (hypertext) classification (for more details see [2]), but it
compression requires the utilization of ART2. (In recent years applicable to a variety of clustering tasks.
another interesting form of adaptive resonance theory, theThe outline of our modified version of ART2 is presented in
so-called fuzzy ARTMAP model, has gained a wide popularity:ig_ 5.
Fuzzy ARTMAP achieves a synthesis of fuzzy logic and ART The main novelty introduced in the modified ART2, over the
model-based neural networks and is capable of supervisgéndard version, is its gradually increastoterance param-
learning. Further references on fuzzy ARTMAP and otheiterp. This parameter is a dynamic generalization of the inverse
innovations in ART NNs can be found at http://www.wi.leideof the standard (static) vigilance paramete(While conceptu-
nuniv.nl/art/.) ally the tolerance parameter of modified ART2 is an equivalent
The main difference between the ART2 learning model and the vigilance parameter of the standard ART2, the new name
the other NN algorithms used for the purpose of VQ (these &las been introduced intentionally in order to stress the differ-
gorithms are mentioned in Section 11-B) is related to the adjusince that comes from the dynamic nature of the former.) It has
ment of the winning node for each new training pattern. Whileeen demonstrated that this feature can ensure several signifi-
the algorithms from Section II-B seek for the closest (winningjant properties, particularly from the perspective of vector quan-
node from the corpus of all currently existing nodes, and uncatization. First, due to the dynamic nature of the tolerance param-
ditionally perform its adjustment, the ART2 model initiates theter it becomes feasible to terminate the learning process when
adjustment only if it deems the winning node to be an acceplte number of output nodes reaches a required value. In other
able match to the current training pattern. In other words, ARNMords, the number of output nodes becomes the controlling
modifies the profile of one of the currently recognized catdactor instead of the tolerance (vigilance) parameter. Second,
gories (clusters) only if the input vector is sufficiently similafor sufficiently small values of the dynamic parametéyp(in
(satisfies vigilance criterion) to risk its further refinement. OthFig. 5) the resulting clustering is completely stable and hier-
erwise, if no available category provides a good enough matenchical. (In this particular case the property of being stable
anew node is created for learning a novel recognition categasynd hierarchical implies that any two input vectors that shared
However, if no adequate match exists and the full capacity tffe same winning node, and thus belonged to the same cluster,
the system has also been exhausted (no further nodes may béina lower level of the tolerance parameter will have a mutual
troduced), the network cannot accommodate the new input amithning node for all higher levels of.) Accordingly, the algo-
learning is automatically inhibited. This mechanism defendsrishm produces results that can be represented by a tree struc-
fully committed memory capacity against eradication by newre or dendogram (see Fig. 7). This property makes the mod-
significantly different input patterns. ified ART2 particularly convenient for enhanced retrieval of
Although ART?2 is theoretically capable of discovering theode-vectors at the coder side of a VQ system. In other words,
main input data clusters, and therefore could be used for cothe modified ART2 is capable of improving the speed of coding,
pression purposes in the manner presented in Section II-A, thérereby providing very rapid compression. (For more on the hi-
are several reasons why it cannot be considered as an idakchical nature of clustering obtained by the modified ART2
vector quantization algorithm. The following features are itsee [2].)
principal disadvantages. First, ART2 requires a fixed number
of output nodes and a predefined vigilance para}mete(. .If the Hierarchical Clustering for Fast VQ Coding
number of clusters that corresponds to the predefined vigilance
parameter is greater than the capacity, or maximum number offhe procedure of finding the closest code-vector for a new
output nodes, the network is incapable of learning all the catattern that occurs at the input of a VQ coder (Fig. 1) is a typical
egories. Therefore, clusters that appear after the full capagiyblem from information retrieval theory [10]. According to
of the network has been exhausted simply remain unaccomrttas theory, conventional retrieval techniques are mainly based
dated or rejected. Second, while the actual value of vigilance mar serial searchwhich means that a given query (new pattern)
rameter {) is the main controlling factor in the learning procesdias to be matched with each prototype-vector in the collection
there is no clear indication how many categories the neural ngtedebook) in other to find the most similar one. Altholggh
work will recognize for that particular. (For the same value of rial searchprovides adequate results, it is acknowledged to be
vigilance parameter the network may recognize different nurextremely slow. In contrast, more sophisticated and efficient re-
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@ LEARNING:
STEP 1: Insert one output node. Initial its reference vector to

Enter: Puax OF Nyaued> AP 5 the first prototype input vector (wi=£)), and set its
and training vectors x; (iA) membership coefficient to the corresponding value of £;.

STEP 2: Chose a new prototype input vector &.

p=0,
ki=1 (icA) STEP 3: Determine the best matching output node s - the
\I/ unit with the nearest reference vector:

prototype input vectors = training vectors x; (icA), ” Ws-& " < " Wn - é" » VneN
membership coefficients =k; where N is the set of output nodes.

STEP 4: Verify that £ belongs to the sth cluster (the cluster
determined by wg and p) if

—— Iv-el <

If so proceed to step 5. Otherwise go to step 6.

p=p+ip

prototype input vectors = reference vectors of output nodes o, (neN) STEP 5: Adjust the reference vector of s according to
membership coefficients =k,
W, = (ks / (kg + k) ws + (ke / (kg + ks)) &

Note that wg becomes the arithmetic mean of all (old and

P = Pmax » OF
number of output nodes = Nyeq

. th .
new) vectors belonging to the s cluster. Adjust the
membership coefficient of s:

ks=ks+k§

Go to step 1.

STEP 6: Since £ does not belong to s, which was the most

Pared - requested number of output nodes (ClUSICIS), P - requested probable, insert a new output node. Set its reference vector to

inverse vigilance (tolerance) parameter, Ap - dynamic parameter, A -
set of training vectors, N ~ set of output nodes £ and its membership coefficient to k.

Qo to step 2.

Fig. 5. Modified ART2 algorithm.

trieval systems are based duster search strategiebistead of
conducting a search through the entire collection, these systems
first classify prototype vectors into subgroups, then confine the
search to certain subgroups only. In other words, they use the
following overall strategy:

¢ Clusters of sufficiently similar prototype vectors are
constructed based on the Euclidean distance measure.

¢ Each cluster is represented by a special vector, known
as thecluster centroid

¢ A given new vector (query) is compared against the
centroids of all groups, and only prototype vectors lo-

cated in the group of the highest query-centroid simi- Hypercentroid
larity are considered for further comparison. Supercentroids
Centroids

Undoubtedly, reducing the number of required comparisons
between prototype vectors and queries, cluster search pro-
vides enhanced retrieval. The outline of a clustered prototype
vector collection is given in Fig. 6. According to Fig. 6Fig. 6. Clustered codebook.

a clustered codebook may have several types of centroids:

hypercentroid—which represents the center of the compldte query first against the highest-level centroids. Then, only
collection, supercentroids—which represent the next levigr the higher level centroids that are shown to be the closest to
of granularity, centroids—which represent regular prototypgle query at each particular level, the search is continued.
vector clusters. Within such a hierarchically organized system,The following figure shows a search tree for the clustered
a search for the closest code-vector is conducted by comparaadjection of Fig. 6.

Prototype (code) vectors
Request (input vector)

-ex.li
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Fig. 7. Search tree for clustered codebook of Fig. 6.

Multilevel cluster search, based on a hierarchical cluster
structure as illustrated in Fig. 7, has been shown to provide sig-
nificant improvements in retrieval efficiency [10]. Accordingly,
such a search applied to the retrieval of code-vectors in a \@. 8. Image with near uniform background together with a few important
system implies very rapid coding. The results in the followin{§*@! detais (original sizes6 x 256 pixels).
section verify that the coding efficiency of a VQ system built

;Jopggc;, hierarchically organized codebook can be improved UPAll images used consisted of 256 256 pixels. The images

were partitioned into subimages of>8 8 pixels. Thus, in all
cases, input- and code-vectors were 64-dimensional. In both
IV. EXPERIMENTAL RESULTS classes of experiments, based on HCL and modified ART2, the
The experiments presented in this section were conductdering of input vectors was randomized prior to their utiliza-
in order to compare the performance of an NN algorithm fdion in the learning process. For each image compressed the
the mse minimization [in our case hard competitive learnirgprresponding mse error and SNR with respect to the original
(HCL)] versus an NN algorithm for the discovery of inpuimage were calculated, using the following expressions:
data clusters (in particular modified ART2) for the purpose

of image compression. One may argue that the algorithms A LN e 2

chosen were not the only representatives of their groups. (For mse= NNy Z Z (2(i, 5) = (i, 4)) (22)
example,k-means [13] is another well-known representative == NN

of clustering algorithms for the mse minimization. It can be 1 iix(L j)?

employed either in “batch” or “on-line” version. While the N1 Ny e T

batch version typically provides for stable but computationally SNR=10log,, (23)

. ; . C i mse
more expensive learning, the on-line version is essentially

equivalent to HCL.) However, the purpose of the experimentghere N; and N, are image width and length;(¢, j) and
was not to investigate subtle improvements by variants of ti¢:, j) are the original and reconstructed pixel intensity,
same learning concept, but to explore the principal advantagespectively.
of one learning concept over the other.

The software simulation of the HCL algorithm was performed. Experiment 1
using the Matlab Neural-Network Toolbox [11]. In each case Tpe first experiment s related to the image given in Fig. 8. As
the network was trained for 5000 iterations, although it was 0Pz, pe observed, the image consists of a large, gradually shaded
served that for most cases learning stabilization was obtaings-kground, with a few important details given in the form of
after less than 3000 iterations. The learning rate was 0.1. Sof@gers (text). (This type of images often can be seen in various
experiments with a larger learning rate failed to provide sensilifgap pages, and therefore their compression may be particularly
reSUItS, while smaller |eaming rates did not contribute to bettmﬁportant from the point of view of Internet Communications_)
compression. Figs. 9(a)-(f), and 10(a)—(f) are the versions of Fig. 8

The simulation of the modified ART2 algorithm was main')fonowing compression and decompression, produced by the
based on our software developed as explained in [2]. (Initialpodified ART2 and HCL algorithms respectively, for different
the software simulation of modified ART2 was just an ingrenumber of nodes—quantization levels. (Note: in the remainder
dient of a larger composite autonomous agent. The agent w@ishe paper the two termsodeand quantization levelwill
implemented in Java, and built for the purpose of Web-page used interchangeably, since there is a clear conceptual
classification employing NN. However, due to its universabne-to-one” relationship between what these terms represent
nature, it was possible to extract the core algorithm from the the case of VQ employing NNs.) It is observed that the
overall system, and apply it to any VC task.) In all cases thsest quality of decompressed data, according to the human
dynamic parameterYp) was set to 0.5. By experimenting withperception of image quality, is obtained by the modified ART2
a number of different cases this value was initially determinedith 128 nodes [Fig. 9(f)].
to provide clustering that is perfectly stable and does notHowever, by comparing the overall performance of the two
depend on the initial ordering of training vectors. algorithms, it may be observed that in almost all cases (for each
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Fig. 9. (a) VQ using modified ART2—four quantization levels, comp. rate: 0.0312 bits/pixel, comp. ratio: 256:1. (b) VQ using modified ART2—eight
quantization levels, comp. rate: 0.0468 bits/pixel, comp. ratio: 170.6: 1. (c) VQ using modified ART2—16 quantization levels, comp. rate: QgIpxes b
comp. ratio: 128: 1. (d) VQ using modified ART2—32 quantization levels, comp. rate: 0.0781 bits/pixel, comp. ratio: 102.4: 1. (e) VQ using motifiedAR
quantization levels, comp. rate: 0.0937 bits/pixel, comp. ratio: 85.3: 1. (f) VQ using modified ART2—128 quantization levels, comp. rate: 13/pb&3, bi
comp. ratio: 73.1:1.

particular number of nodes) modified ART2 outperforms HCLlof significant importance from the point of view of human per-
This is because HCL, due to its mse minimization, is depeoeption.

dent on input data distribution density. Accordingly, in the case In contrast to HCL, the modified ART2 algorithm allocates
of Fig. 8, HCL concentrates most of the nodes within or closery few nodes to the background. Note that in all the decom-
to the input vectors related to the background, since, statigiressed versions up to 128 quantization levels it remains com-
cally, these represent the most plentiful data. That portion plietely uniform (nonshaded), and therefore considerably dif-
the image, however, apparently does not contain a significdatent from the original. However, the textual portion of the
amount of valuable information, and therefore high decomprasiage, which contains all valuable information, in spite its small
sion quality of the background obtained in Fig. 10(d)—(f) is natirect statistical weight occupies most of the nodes. Therefore,
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(@ (b)

(e) ®

Fig.10. (a)VQ using HCL—four quantization levels, comp. rate: 0.0312 bits/pixel, comp. ratio: 256 : 1. (b) VQ using HCL—eight quantizatiooiepelste:
0.0468 bits/pixel, comp. ratio: 170.6: 1. (c) VQ using HCL—16 quantization levels, comp. rate: 0.066 25 bits/pixel, comp. ratio: 128: 1. (d) VQlusi3@ H
quantization levels, comp. rate: 0.0781 bits/pixel, comp. ratio: 102.4:1. (e) VQ using HCL—64 quantization levels, comp. rate: 0.0937 bdsipixedtio:
85.3: 1. (f) VQ using HCL—128 quantization levels, comp. rate: 0.1093 bits/pixel, comp. ratio: 73.1: 1.

with just 64 quantization levels modified ART2 appears to bB. Experiment 2
capable of providing almost 100% accurate reconstruction of ] )
the primary (textual) information [Fig. 9(e)]. The second experiment is related to the well-known Lena
It is interesting to observe that although HCL attempts t§age (Fig. 11).

minimize the mse within the reference vector space, it doesFigs. 12 and 13 correspond to the compression obtained with
not always ensure an equally efficient performance on the pixbe two algorithms using 256 quantization levels. A careful

level. Moreover, it seems that for a sufficient number of quamspection of these images leads to the conclusion that HCL
tization levels modified ART2 provides a considerably loweprovides evenly distributed distortion, and therefore, a better
pixel-to-pixel mse (Table I), i.e., higher SNR (Table II). quality on average. On the other hand, although modified ART2
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TABLE |
mseFOR DECOMPRESSEDV ERSIONS OFFIG. 8
MSE Modified ART2 HCL
4 nodes 947.3693 897.8713
8 nodes 834.8995 725.4022
16 nodes 619.4570 411.7769
32 nodes 391.5331 369.3275
64 nodes 237.4687 348.1657
128 nodes 4.0443 333.7010
TABLE 1l
SNRFOR DECOMPRESSEDVERSIONS OFFIG. 8
SNR Modified ART2 HCL
4 nodes 16.5746 16.8076
8 nodes 17.1234 17.7340
16 nodes 18.4196 20.1931 Fig. 13. VQ of Lena image using HCL, 256 quantization levels, comp rate:
32 nodes 20.4121 20.6656 0.125 bits/pixel, comp. ratio: 64 : 1, mse: 382.4340, SNR: 15.1238.
64 nodes 22.5837 20.9219
128 nodes 40.2712 21.1062

Fig. 14. VQ of Lena image using modified ART2, 512 quantization levels,
comp. rate: 0.1406 bits/pixel, comp. ratio: 56.8: 1, mse: 17.9365, SNR: 28.4120.

Fig. 11. Lenaimage.

Fig. 15. VQ of Lena image using HCL, 512 quantization levels, comp rate:
Fig. 12. VQ of Lena image using modified ART2, 256 quantization |eve|§3.1406 bits/pixel, comp. ratio: 56.8: 1, mse: 319.4959, SNR: 15.9047.
comp. rate: 0.125 bits/pixel, comp. ratio: 64: 1, mse: 122.5710, SNR: 20.0655.
(quantization levels), respectively. While Fig. 14 is undoubtedly

is not as efficient as HCL regarding the areas of slowly varying significant improvement over Fig. 12, it appears that Fig. 15
shading without much entropy or information (for example thig almost of the same quality as Fig. 13 (however, note that the
shoulder, the hat, etc.), it successfully preserves all importanse of Fig. 15 is actually lower than that of Fig. 13). The per-
details. Accordingly, Fig. 12 appears to be more approprigi@mance mainly results from the mse minimization property of
for recognition of important features than Fig. 13. the algorithm. However, there are some indications that for this

Figs. 14 and 15 are the decompressed versions of the Leaaticular image and for a large number of nodes (over 256),
image produced by modified ART2 and HCL with 512 nodellCL becomes trapped in a local minimum.
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TABLE I
CODING OF LENA IMAGE USING MULTILEVEL SEARCH STRATEGY
number of coding time compared to
comparisons serial search strategy
1-level 524288 100 %

2-levels 287976 54.92 %
3-levels 176200 33.60 %
4-levels 123945 23.64 %
5-levels 98346 18.75 %

Fig. 17. VQ of Clown image using modified ART2, 256 quantization levels,
comp. rate: 0.125 bits/pixel comp. ratio: 64 : 1, mse: 351.8208, SNR: 15.8068.

Fig. 16. Clown image.

From a practical point of view, serial search coding (see Sec-
tion 111-A of an 256 x 256 pixel image, based on8 8 pixel
subimages, requires each of the 1024 subimages to be matched
against each of the code (reference) vectors. Thus, if there are
512 quantlzat'o_n levels, it 'mp.“(f"s 524 288 compar.lsons In tc_)t%#g. 18. VQ of Clown image using HCL, 256 quantization levels, comp rate:
In order to provide a more efficient coding, a multilevel coding.125 bits/pixel, comp. ratio: 64 : 1, mse: 664.8278, SNR: 13.0429.
strategy is applied.

In particular, 512 reference vectors that correspond to the Experiment 3

Lena image, obtained by the modified ART2, are used as the ) ] ] ] ]
“root” (zeroth level) of a five-level dendogram (search tree). 1"€ main purpose of this experiment was to investigate the

This means that, as described in Section IlI-A, these 512 &edlity of a decompressed image whose compression is based
first grouped into 256 clusters (first level), with each clusteé?n the codebook obtained for some other image. __
represented by the cluster centroid. Then, the 256 centroids arE'9S- 19 and 20 are the decompressed versions of the familiar
further grouped into new 128 clusters, and similar procedur&Wn image (Fig. 16) based on the codebooks obtained for the
follow for the next 64, i.e., 32 clusters. Accordingly, the seardte"@ image using modified ART2 and HCL, respectively (see
for the reference vector (among the 512) closest to a new infiu@S: 17 and 18). According to the mse and SNR measures, the
vector that appears at the input of a VQ coder, begins from tA@dified ART2 algorithm again produces an image of better
highest level of the tree. Table 11l shows that with the five-levéuality than HCL. However, the decision as to which algorithm
dendogram the complete coding of the Lena image is performBdNis case provides better results from the point of view of
in just 18.75% of the time required when a serial search stratdgyman perception, is best left to the reader.
is applied. Also, from Table lll, it can be observed that fewer .
levels in the dendogram implies a less efficient coding perfdr- EXperiment 4
mance. The fourth experiment provides a comparison between VQ
Note: Table Il does not provide the exact coding times in sebased on modified ART2 and the widely used JPEG algorithm,
onds. Instead, it provides the number of required comparisdngerms of compression quality and efficiency.
(input vectors-to-code vectors) as a valid measure of coding efin general, the main principles of vector quantization and
ficiency. We intentionally avoid using “time in seconds,” sincdPEG compression are substantially different. As explained in
with this performance metric the same algorithm could suggeatction |, VQ requires for each subimage (input data block) the
significantly different results depending on the specific machimeearest code-vector to be selected, and only the index of that
used for simulation. Also, note that in Table 11l a 1-level searatode-vector is transmitted through the channel (Fig. 1). Since
strategy implies that the tree consists of the zeroth level onlyttee overall sizes of the codebook, code-vectors, and image itself
two-level search strategy implies the zeroth and first level, etare known in advance, it is possible to predict the corresponding
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Fig. 21. JPEG compression scheme.

Fig. 19. Compression of Clown image based on the codebook obtained
for Lena Image using modified ART2, 256 quantization levels, comp. rate:
0.1406 bits/pixel, comp. ratio: 56.8: 1, mse: 918.1306, SNR: 11.6410.

Fig. 22. Decompressed JPEG version of Fig. 8 (compressed filesize: 1660
bytes).

Fig. 20. Compression of Clown image based on the codebook obtained for
Lena image using HCL, 256 quantization levels, comp rate: 0.1406 bits/pixel,
comp. ratio: 56.8:1, mse: 1180.2129, SNR: 10.5504.

compression rate and ratio in any particular case. In other words,
the total amount of information which has to be sent through the

channel when utilizing avQ compression technique is EgéQZS)./tesD)ecompressed JPEG version of Lena image (compressed filesize:

compressedhformation ) )
imagesize In contrast to the VQ-based compression, JPEG provides

= Subimagesize codevectarsize[bits]  (24) better control over the quality of decompressed images, pri-
marily through the adjustment of the quantization step sizes
However, in VQ techniques the quality of a decompresséBig. 21). Thus, for example, large quantization steps mostly
image cannot be directly controlled or predicted, and it mainhgsult in substantial compression and significantly reduced
depends on the nature of the codebook used. In particular, gaplity, with most of the high-frequency coefficients removed.
quality can be expected if the codebook has been obtained $mnall quantization steps imply the opposite. However, since
an image similar to the image which is the subject of conthe quantization is followed by the encoding process, which
pression. Otherwise, the decompressed image may significamtiiyoduces some additional compression of the lossless type,
differ from the original, or it may appear to be very noisy, eveit is difficult if not impossible to predict the exact size of the
though the actual compression ratio may not be very large. resulting compressed images [8]. In other words, with the
The JPEG compression algorithm, on the other hand, is bas&EG compression algorithm it becomes practically impossible
on the following principles. As each:8 8 subimage is encoun- to predict the precise value of the compression ratio required.
tered, its 64 pixels are “level shifted” 87—, where2? is the Therefore, most of the existing image editing tools provide their
maximum number of gray levels. The discrete cosine transfomwn subjective compression scales, enabling the users to only
(DCT) coefficients of the block are then computed, quantizeglalitatively control the actual size and quality of compressed
(normalized), and coded using a variable length code sche@BEG files.
as presented in Fig. 21. (For more details on JPEG see [8], antFigs. 22—24 were produced by the Matlab Image Processing
[12]) Toolbox, with the JPEG quality factor set to 2. (In general, this
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Fig. 24. Decompressed JPEG version of Clown image (compressed filesize:

1783 bytes). Fig. 26. Decompressed JPEG version of Bird image (compressed filesize:
1358 bytes), comp. ratio: 51.5: 1.

TABLE IV
FILESIZES OFCOMPRESSEDIMAGES PRODUCEDUSING JPEG A.GORITHM
image compressed filesize (information)
Figure 22 1660 [bytes]
Figure 23 1639 [bytes]
Figure 24 1783 [bytes]
TABLE V
FILESIZES OFCOMPRESSEDIMAGES PRODUCED USING MODIFIED ART2
image compressed filesize (information)
Figure 9-f) 896 [bytes]
Figure 12 1024 [bytes]
Figure 16 1024 [bytes]

Fig. 27. VQ of Bird image using modified ART2, 64 quantization levels,
comp. rate: 0.0937 bits/pixel, comp. ratio: 85.3:1.

Fig. 25. Bird image (filesize: 69 902 bytes).

factor can take any value in the range 0—-100, where 0 implies the
worst quality but the most intensive reduction in filesize, while
100 implies the best quality and no reduction in filesize.) In our
case the quality factor of 2 resulted in images of sizes closerig. 28. VQ of Bird image using modified ART2, 128 quantization levels,
1024 [bytes] (Table 1V). Therefore, an adequate quality-relat&emp- rate: 0.1093 bits/pixel, comp. ratio: 73.1: 1.
comparison of these images with the corresponding images pro-
duced using VQ based on modified ART2 (as given in Table \ART2 can outperform the standard JPEG compression scheme
was possible. at comparable compression ratios provided the VQ codebooks
Even a very superficial inspection suggests that Figs. 9(8re appropriate to the images being compressed. Note that the
12, and 16 are of considerably better quality than Figs. 22—24tios in the above figures are well in excess of those normally
respectively. In general, this implies that VQ based on modifieanployed with JPEG.
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Fig. 29. Slope image (filesize: 69 706 bytes). Fig. 32. VQ of Slope image using modified ART2, 256 quantization levels,
comp rate: 0.125 bits/pixel, comp. ratio: 64: 1.

Hello World

Fig. 30. Decompressed JPEG version of Slope image (compressed filesize:
1537 bytes), comp. ratio: 45.3:1. Fig. 33. Montage image (filesize: 70 514 bytes).

Hello World

Fig. 31. VQ of Slope image using modified ART2, 128 quantization level&ig. 34. Decompressed JPEG version of Montage image (compressed filesize:

comp. rate: 0.1093 bits/pixel, comp. ratio: 73.1: 1. 1612 bytes), comp. ratio: 43.7: 1.
E. Various Experiments the obtained results will motivate further investigations and a
. . : . . _wider f modified ART2 for th r f im m-
This section contains a series of decompressed ima ege use of modified or the purposes of image co

(Figs. 25-40) obtained by experimenting with the JPEE>>'°™

scheme and VQ based on modified ART2.

The main goal of the experiments was to provide a better
understanding of the features and compression capabilities ofn this paper, the main disadvantages of most of the existing
modified ART2, and also to give ground for a more valid comvQ techniques based on the mse minimization principle have
parison against JPEG which is considered to be the most cdmeen described. The theoretical discussion and reported results
monly used compression scheme on the Internet today. We hbpee suggested the main benefits of utilizing the modified ART2

V. CONCLUSION AND FUTURE WORK
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Hello World

i
/5

Fig. 35. VQ of Montage image using modified ART2, 256 quantization levelgig. 38. Decompressed JPEG version of Casablanca image (compressed
comp. rate: 0.125 bits/pixel, comp. ratio: 64: 1. filesize: 1706 bytes), comp. ratio: 41.7: 1.

Hello World

Fig.36. VQ of Montage image using modified ART2, 512 quantization levelgsig. 39. VQ of Casablanca image using modified ART2, 256 quantization
comp rate: 0.1406 bits/pixel, comp. ratio: 56.9: 1. levels, comp. rate: 0.125 bits/pixel, comp. ratio: 64 : 1.

Fig. 37. Casablanca image (filesize: 71 212 bytes). Fig. 40. VQ of Casablanca image using modified ART2, 512 quantization
levels, comp. rate: 0.106 bits/pixel, comp. ratio: 56.9: 1.

algorithm over the other NN algorithms for the purpose of code-

book creation. It has been proven that modified ART2, due toizing neural networks (HCL), we are not claiming its superi-

its ability to preserve fine details in decompressed images, is caity over all other classes of NN algorithms. The performance

pable of providing particularly satisfactory results when dealingf NN algorithms based on error criteria other than mse is still

with text-based images, i.e., images of excessively nonunifotmbe investigated.

distribution. Some situations in which modified ART2 outper- Another area of possible future research is related to the cre-

formed the well-known JPEG compression algorithm have alation and size of codebook in the general case of vector quan-

been reported. tization for image compression purposes. In particular, at the
Although based on the results presented in the paper modifig@ésent stage the main obstacle toward a mass implementation

ART2 clearly outperform a typical representative of mse-minaf VQ techniques, including VQ based on modified ART2 as
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described in this paper, seems to be the lack of a standardizef] B. Fritzke. (1997) Some competitive learning methods. [Online]. Avail-
Codebook. Accordlngly, most VQ models assume that a Code_ able: http://WWW.neUrOlnformatlk.rUhr-Unl-bOChUm.de/lnl/VDM/re-
book i ted for each image compressed, and the knowly, oaci/gsnhavabaper/
00K IS Crea(_:" I _g_ p ' W [8] K. Sayood,Introduction to Data Compression San Francisco, CA:
edge of the given codebook is immediately present at the re-  Morgan Kaufmann, 1996.
ceiver side, typically at no cost. Of course, this assumption is(®] f-gg'layk'”' Neural Networks Englewood Cliffs, NJ: Prentice-Hall,
not entlrely rea_‘“St'C’ a”?' Clearly such a codebook can be e)110] C. J. van Rijsbergeninformation Retrieval Boston, MA: Butter-
pected to provide a noticeably better performance when used worths, 1975.
in the compression and decompression of the original than d#1l H. Demuth and M. BealeNeural Network Toolbox for Use with
. . . . Matlab. Natick, MA: The Mathworks, Inc., 1996.

?‘n arbltrﬁry 'mage' One p053|b_le solution to the aboye prObIerHZ] R. C. Gonzales and R. E. WoodXgital Image Processing New York:
is the utilization of a larger universal codebook, which would Addison-Wesley, 1993.
ensure equally good performance for a wide class of imageél.3] C. M. Bishop, Neural Networks for Pattern RecognitionOxford,

- . . . U.K.: Clarendon, 1995.
However, every increase in the size of the codebook results in
an increase in the number of bits per each code-vector identifier.
Accordingly, with a larger codebook lower compression ratios
are to be obtained. Still, it should be noted that the number
bits per code-vector identifier, and therefore the size of cor
pressed images, only grows logarithmically with the size of tt
universal codebook. Thus, the idea of quite large universal cot
books should be entertained (with copies at all sites as in JP
encoders/decoders) perhaps with progressively larger univel

codebooks employed when quality requirements are demand
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