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Abstract—Most neural-network (NN) algorithms used for the
purpose of vector quantization (VQ) focus on the mean squared
error minimization within the reference- or code-vector space. This
feature frequently causes increased entropy of the information con-
tained in the quantizer (NN), leading to a number of disadvantages,
including more apparent distortion and more demanding trans-
mission. A modified adaptive resonance theory (ART2) learning
algorithm, which we employ in this paper, belongs to the family
of NN algorithms whose main goal is the discovery of input data
clusters, without considering their actual size. This feature makes
the modified ART2 algorithm very convenient for image compres-
sion tasks, particularly when dealing with images with large back-
ground areas containing few details. Moreover, due to the ability to
produce hierarchical quantization (clustering), the modified ART2
algorithm is proven to significantly reduce the computation time
required for coding, and therefore enhance the overall compres-
sion process. Examples of the results obtained are presented in the
paper, suggesting the benefits of using this algorithm for the pur-
pose of VQ, i.e., image compression, over the other NN learning
algorithms.

Index Terms—Data processing, image compression, unsuper-
vised neural network (NN) learning.

I. INTRODUCTION

V ECTOR quantization (VQ) is known to be a very useful
technique in lossy data compression. In general, compres-

sion techniques fall into two main classes.Lossless compres-
sion,although it allows a perfect reconstruction of the original
information, has very limited ability to reduce the amount of
data.Lossy compression,on the other hand, is much more effec-
tive, but inevitably leads to some distortion when information is
decompressed. From this perspective, the main advantage of VQ
over the other lossy compression techniques is that it exploits
the structure underlying a given data set and thereby provides
a lower level of distortion for a given compression rate, i.e.,
number of bits per sample, as compared to many other methods.
This is especially the case if data is significantly correlated, or,
in other words, if data ensembles (groups of data points) tend to
fall in clusters.
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Fig. 1. Vector quantization for image compression.

The design and operation of a VQ system is based on the fol-
lowing principles. First, a limited set of vectors (code-vectors),
which are assumed to be representatives of all such data ensem-
bles that might be generated from the source, are chosen in order
to form thecodebook. The codebook is known to both the VQ
encoder and decoder. In order to be processed by the system,
every data stream coming from the source has to be grouped
into blocks or vectors of the code-vector dimensionality. For
every input data block the nearest code-vector is selected (this
process is called theencoding phase), and only the index of that
code-vector is transmitted through the channel. On the other side
of the channel, since the decoder has exactly the same codebook,
the original code-vectors can be easily retrieved. This process is
called thedecoding phase,since it enables the reconstruction of
the original input data set.

The size of the codebook is usually of the form, where
is an integer number. Accordingly, represents the number of
bits required to encode each code-vector, i.e., its index. Further-
more, if the code- and input vectors are of dimensionality, the
compression ratio obtained by the system is [bits/sample].
It is apparent that either by using a codebook with fewer code-
vectors or by employing code-vectors, i.e., input data blocks,
of larger dimensionality, a better (greater) compression ratio
can be achieved. However, the distortion of input data tends to
increase as the compression ratio increases, and therefore the
values chosen for and are supposed to provide a certain
balance between these features.

Fig. 1 illustrates the VQ procedure for image compression.
The principal problem in VQ is to find a codebook which

would minimize the loss of information caused by compres-
sion and decompression according to some criteria, i.e., perfor-
mance measure. The most commonly used performance mea-
sures are the mean squared error (mse) and the signal-to-noise
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ratio (SNR). Although the mse and SNR can provide an ob-
jective analysis of the quality of compression from a technical,
or mathematical, point of view, they do not always correspond
to the quality standards of human perception. Therefore, the
judgment on the performance of a VQ system has to incorpo-
rate both objective mathematical and subjective human percep-
tion-related measures.

Various techniques have been proposed and used for the
purpose of codebook creation, including several neural network
(NN) learning algorithms. It can be observed that all these
techniques mainly focus on the mse minimization within the
codebook vector space, thereby attempting to increase the av-
erage information per node, i.e., quantization level, in the sense
of Shannon’s entropy. In this paper we argue that for datasets,
particularly images, uncorrupted with noise and of nonuniform
block-vector (subimage) distribution, large Shannon’s average
information per node, i.e., Shannon’s entropy, is not an ap-
propriate goal. Instead, large average information in the sense
of arithmetic mean seems to be more related to the quality of
decompressed data, and therefore a more suitable goal. Our
modified ART2 algorithm is an NN learning algorithm whose
primary aim is not the mse minimization within the whole
reference vector (code-vector) space, as is the case with some
other NN algorithms. Instead it focuses on the discovery of the
main clusters while minimizing the mse within each of them.
In the following sections we show that the modified ART2,
having the ability to produce hierarchical clustering insensitive
to nonuniform variations in the input data distribution, offers
several advantages over the other NN learning algorithms in
terms of vector quantization and coding for image compression.

II. THEORETICAL BACKGROUND

Let us assume a very simple case, as presented in Fig. 2. The
dataset consists of one-dimensional data-points, and these are
grouped into two main clusters. The corresponding distribution
density, i.e., the probability density function (pdf), is consider-
ably larger within one than within the other cluster. Conceptu-
ally, this distribution could be conceived as an analogy to the
subimage distribution obtained by subdividing an image of a
fairly uniform background with a few important foreground de-
tails (see Fig. 8). For a better understanding of the following
discussion, it has to be emphasized that for the case of such
an image, although the details present a small portion of the
overall data and statistically are almost negligible compared to
the background, they actually may contain nearly all important
information that the image carries.

Now, let us further assume that the dataset presented in Fig. 2
is used as a training set for a two-node NN, which is supposed
to operate as a quantizer. This implies that after the training
is performed, the NN will be capable of classifying the data
into two mutually disjoint groups, such that each group consists
only of the data-points placed within the Voronoi region of one
of the nodes. In other words, for all data-points of one partic-
ular group the same node, i.e., its reference vector, presents the
closest quantization level.

In general, classification, or quantization, obtained by an NN
is uniquely and exclusively defined by the positions of its nodes,

Fig. 2. Probability density function of a given dataset.

Fig. 3. Quantization focused on the discovery of the main input data clusters.

i.e., their reference vectors. Since the positions of the reference
vectors are determined by the nature of the learning algorithm
applied, various NN learning algorithms may result in signifi-
cantly different clusterings for the same dataset.

A. Quantization Using Algorithms for Input Data Cluster
Discovery

Fig. 3 illustrates one possible clustering obtained for the
dataset presented in Fig. 2. Theoretically, such clustering could
be provided by a neural network algorithm capable of discov-
ering the main input data clusters. In particular, this means
that the algorithm, both during the learning and testing phase,
allocates the same winning node to sufficiently similar (close)
input vectors only, independent of the input data distribution
density. It has been proven that adaptive resonance theory
(ART) [1], and as a result modified ART (ART2) [2], satisfy
these requirements, and therefore should be able to provide
clustering as given in Fig. 3.

If we define the probability of a node with the respect to
by

(1)

[in general, annotates the pdf of code-vectors obtained
by sampling an image] and accordingly the information content
that corresponds to that node by

(2)

( set of nodes) then for the case of Fig. 3 ,
and . This implies that an NN algorithm ca-
pable of clustering in the manner illustrated in Fig. 3 results
in node positions, probabilities, and information content which
may accurately indicate the positions, probabilities, and infor-
mation content of the actual clusters.
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For the sake of the following discussion, let us emphasize that
due to the properties

(3)

and

(4)

obtained for any clustering, the following equation will hold:

(5)

In general, an NN for vector quantization can be regarded as
a secondary source,or a source to the channel,since the ac-
tual outcome from the encoder to the channel (Fig. 1) is simply
the set of reference vectors of the nodes. Accordingly, it makes
sense to define the entropy of such a source, and for the above
case the entropy would be

(6)

Entropy, as given in (6), can be interpreted as the sum of
the nodes’ self-information, weighted by the corresponding
node probability. Accordingly, from a Shannon’s entropy point
of view, the information content of node 1 (see Fig. 3), when
weighted, might appear less important than the information
content of node 2. This approach to the estimation of average
information coming from a secondary source (of the type that is
being discussed in this section) is appropriate for the situations
when the original dataset is noisy (such as an image corrupted
with random noise). In those cases node 1 might be conceived
simply as a representative of a cluster of meaningless data, or
in other words data corrupted with noise. (A real noisy image
would have many clusters of this sort.) Thus, the “weighting”
from equation (6) would have the purpose of suppressing the
information contained in “noisy nodes.”

However, as has already been mentioned, for images uncor-
rupted with noise, with large background areas and relatively
few important details, the above concept would be incorrect. A
more appropriate measure of the average information coming
from a secondary source in these cases would be simply the
arithmetic mean of node information, as given in (7)

(7)

The average information from (7) can be seen to be a special
case of (6), assuming that all nodes (clusters) are considered
equally important.

B. Quantization Using Algorithms for Input Data Density
Estimation

Most of the currently used NN learning algorithms for vector
quantization, including standard (hard) and soft competitive
learning, self-organizing feature maps [3], growing and split-
ting elastic networks [4], neural gas networks [5] and networks

Fig. 4. Clustering influenced by the topology of input data.

based on the minimum description length principle [6] focus
on the mse (or expected quantization error) minimization. For
the case of a continuous input data distribution , or for a
finite input dataset , mses are given in (8), respectively

EMS

(8)

where is the reference vector of node.
It has been shown that an NN algorithm with the mse mini-

mization within the reference vector space as its primary goal is
capable of positioning the nodes in the way that they match the
input data distribution density [7]. Accordingly, the reference
vectors (nodes) tend to be distributed such that they become
“winners” with the same probability. In other words, Voronoi
regions tend to contain the same number of input data-points.
Therefore, for example, if the input data is of a significantly
nonuniform distribution, most of the nodes will concentrate in
the vicinity of regions with large distribution density. (For more
details on this property see [2].)

Fig. 4 illustrates data-point quantization or clustering of the
dataset presented in Fig. 2 obtained using an NN algorithm to
perform a mse minimization. From the practical point of view,
since the initial values of the reference vectors in this type of NN
algorithm are usually determined by the statistics of the input
data, it can be assumed that the learning procedure begins with
both nodes within cluster 2. However, later in the learning, due
to being the winner for data-points from cluster 1, one of the
nodes (in our case node 1) gradually moves toward the posi-
tion indicated in Fig. 4. The other node, node 2, remains within
cluster 2, since there are no other data points for which it could
be the winner. Eventually, the learning terminates with the prob-
ability of node 1 with respect to approaching the proba-
bility of node 2 with respect to .

If, in this case when an NN algorithm for mse minimization
is employed, and are used to annotate the proba-
bilities of node 1 and 2 with respect to [according to the
definition given in (1)], then from the above discussion it fol-
lows that

(9)

(i.e., the learning algorithm tends to position node 1 in such a
way that and become as close as possible), and
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accordingly, with respect to the clustering concept from Sec-
tion II-A,

(10)

(11)

where . [Note: since an NN with only two nodes is
assumed, and the respective node probabilities always sum to
unity based on (5), then a new clustering policy that decreases
the probability of node 1 for inevitably implies an increase
of node 2 probability for the same amount.]

Based on the above equations, the entropy of a sec-
ondary source that produces a clustering such as that presented
in Fig. 4 is

(12)

Furthermore, the difference between (from Section II-A)
and can be expressed by

(13)

Now, due to the well-known inequality , we have
that

(14)

which further implies

(15)

Since, according to (9), , the important
conclusion is that

(16)

In a similar fashion it can be proved that

(17)

Accordingly

(18)

which for implies

(19)

or simply

(20)

[Through more complex procedures (16) and (20) can readily
be extended to arbitrary number of nodes, or clusters].

In practical terms (16) implies that the entropy of a secondary
source based on an algorithm for the mse minimization will al-
ways be greater than or equal to the entropy of a secondary
source that simply focuses on input data cluster discovery. How-
ever, based on the elaboration from Section II-A, large entropy
may be an appropriate goal only when input data is corrupted
with noise. In all other cases, such as the images treated in this
paper, large entropy may be entirely irrelevant. Moreover, it may
be an indicator of inadequate quantization.

In terms of coding, (16) suggests another disadvantage of al-
gorithms for mse minimization compared to algorithms for the
discovery of input data clusters. If we recall from information
theory [8], a lower bound on the entropy of a code (set of code-
words) used to encode the symbols of a source is the source
entropy itself, as in (21). (In the case of quantization by an NN,
source symbols are the reference vectors, while each codeword
is simply a binary symbol allocated to one of the source sym-
bols.)

(21)

where is the source entropy, and is the corre-
sponding code entropy.

Let us further recall that, for a given code that is allowed to
have a variable codeword length, the code-entropy corresponds
to the average length of its codewords, given in [bits/symbol] [8].
This implies the following interpretation of (21): for a source
of a certain entropy , it is theoretically possible to gen-
erate a corresponding code of average codeword length as low as

. Undoubtedly, regarding the transmission, codes of lower
average codeword length are more efficient. With respect to the
above explanation, (16) shows that a secondary source based on
an algorithm for mse minimization tends to be more demanding
from the transmission point of view than a secondary source
based on an algorithm for the discovery of input data clusters,
without necessarily providing better compression.

Finally, (20) is additional proof of a potentially disadvanta-
geous utilization of algorithms for mse minimization. In partic-
ular, if we assume that for a given number of nodes the family
of algorithms presented in Section II-A is capable of matching
the probabilities of input data clusters in an optimal way, then

presents the optimal average information per node in the
sense of arithmetic mean. However, based on (20), the arith-
metic mean of node information that corresponds to the family
of algorithms presented in this section will always be less than,
or at most equal to, the optimal value.
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III. M ODIFIED ART2 VERSUSART2 FOR VECTOR

QUANTIZATION PURPOSES

ART, introduced in 1976 by Grossberg, is an unsuper-
vised learning technique, partially based on the well-known
winner-take-all concept, but also influenced by the sta-
bility-plasticity dilemma [1]. (For more on winner-take-all
concepts see [2] or [9].) There are two main adaptive res-
onance theory models: ART1 and ART2. While the ART1
model is capable of stably learning binary input patterns, the
ART2 models show the same behavior for analog patterns.
Since 8–bit gray-scale images consist of pixels that can take
any value between 0 and 255, vector quantization for image
compression requires the utilization of ART2. (In recent years
another interesting form of adaptive resonance theory, the
so-called fuzzy ARTMAP model, has gained a wide popularity.
Fuzzy ARTMAP achieves a synthesis of fuzzy logic and ART
model-based neural networks and is capable of supervised
learning. Further references on fuzzy ARTMAP and other
innovations in ART NNs can be found at http://www.wi.leide-
nuniv.nl/art/.)

The main difference between the ART2 learning model and
the other NN algorithms used for the purpose of VQ (these al-
gorithms are mentioned in Section II-B) is related to the adjust-
ment of the winning node for each new training pattern. While
the algorithms from Section II-B seek for the closest (winning)
node from the corpus of all currently existing nodes, and uncon-
ditionally perform its adjustment, the ART2 model initiates the
adjustment only if it deems the winning node to be an accept-
able match to the current training pattern. In other words, ART2
modifies the profile of one of the currently recognized cate-
gories (clusters) only if the input vector is sufficiently similar
(satisfies vigilance criterion) to risk its further refinement. Oth-
erwise, if no available category provides a good enough match,
a new node is created for learning a novel recognition category.
However, if no adequate match exists and the full capacity of
the system has also been exhausted (no further nodes may be in-
troduced), the network cannot accommodate the new input and
learning is automatically inhibited. This mechanism defends a
fully committed memory capacity against eradication by new
significantly different input patterns.

Although ART2 is theoretically capable of discovering the
main input data clusters, and therefore could be used for com-
pression purposes in the manner presented in Section II-A, there
are several reasons why it cannot be considered as an ideal
vector quantization algorithm. The following features are its
principal disadvantages. First, ART2 requires a fixed number
of output nodes and a predefined vigilance parameter. If the
number of clusters that corresponds to the predefined vigilance
parameter is greater than the capacity, or maximum number of
output nodes, the network is incapable of learning all the cat-
egories. Therefore, clusters that appear after the full capacity
of the network has been exhausted simply remain unaccommo-
dated or rejected. Second, while the actual value of vigilance pa-
rameter ( ) is the main controlling factor in the learning process,
there is no clear indication how many categories the neural net-
work will recognize for that particular. (For the same value of
vigilance parameter the network may recognize different num-

bers of categories for different input data distributions.) How-
ever, as has been explained in Section I, vector quantization
generally assumes codebooks to be of size, which implies
a requirement for same number of nodes in the network. There-
fore, it may be very complicated if not impossible, requiring
extensive experimentation, to find the exact value of vigilance
parameter which would correspond to the required number of
nodes for each particular input data distribution.

The modified ART2 algorithm we employ is a neural learning
algorithm based on the conceptual approach of ART2, while at
the same time overcoming the above mentioned problems. The
modified ART2 algorithm was originally developed for Web
page (hypertext) classification (for more details see [2]), but it
is applicable to a variety of clustering tasks.

The outline of our modified version of ART2 is presented in
Fig. 5.

The main novelty introduced in the modified ART2, over the
standard version, is its gradually increasingtolerance param-
eter . This parameter is a dynamic generalization of the inverse
of the standard (static) vigilance parameter. (While conceptu-
ally the tolerance parameter of modified ART2 is an equivalent
to the vigilance parameter of the standard ART2, the new name
has been introduced intentionally in order to stress the differ-
ence that comes from the dynamic nature of the former.) It has
been demonstrated that this feature can ensure several signifi-
cant properties, particularly from the perspective of vector quan-
tization. First, due to the dynamic nature of the tolerance param-
eter it becomes feasible to terminate the learning process when
the number of output nodes reaches a required value. In other
words, the number of output nodes becomes the controlling
factor instead of the tolerance (vigilance) parameter. Second,
for sufficiently small values of the dynamic parameter (in
Fig. 5) the resulting clustering is completely stable and hier-
archical. (In this particular case the property of being stable
and hierarchical implies that any two input vectors that shared
the same winning node, and thus belonged to the same cluster,
for a lower level of the tolerance parameter will have a mutual
winning node for all higher levels of.) Accordingly, the algo-
rithm produces results that can be represented by a tree struc-
ture or dendogram (see Fig. 7). This property makes the mod-
ified ART2 particularly convenient for enhanced retrieval of
code-vectors at the coder side of a VQ system. In other words,
the modified ART2 is capable of improving the speed of coding,
thereby providing very rapid compression. (For more on the hi-
erarchical nature of clustering obtained by the modified ART2
see [2].)

A. Hierarchical Clustering for Fast VQ Coding

The procedure of finding the closest code-vector for a new
pattern that occurs at the input of a VQ coder (Fig. 1) is a typical
problem from information retrieval theory [10]. According to
this theory, conventional retrieval techniques are mainly based
on serial search,which means that a given query (new pattern)
has to be matched with each prototype-vector in the collection
(codebook) in other to find the most similar one. Althoughse-
rial searchprovides adequate results, it is acknowledged to be
extremely slow. In contrast, more sophisticated and efficient re-
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Fig. 5. Modified ART2 algorithm.

trieval systems are based oncluster search strategies. Instead of
conducting a search through the entire collection, these systems
first classify prototype vectors into subgroups, then confine the
search to certain subgroups only. In other words, they use the
following overall strategy:

Clusters of sufficiently similar prototype vectors are
constructed based on the Euclidean distance measure.
Each cluster is represented by a special vector, known
as thecluster centroid.
A given new vector (query) is compared against the
centroids of all groups, and only prototype vectors lo-
cated in the group of the highest query-centroid simi-
larity are considered for further comparison.

Undoubtedly, reducing the number of required comparisons
between prototype vectors and queries, cluster search pro-
vides enhanced retrieval. The outline of a clustered prototype
vector collection is given in Fig. 6. According to Fig. 6,
a clustered codebook may have several types of centroids:
hypercentroid—which represents the center of the complete
collection, supercentroids—which represent the next level
of granularity, centroids—which represent regular prototype
vector clusters. Within such a hierarchically organized system,
a search for the closest code-vector is conducted by comparing

Fig. 6. Clustered codebook.

the query first against the highest-level centroids. Then, only
for the higher level centroids that are shown to be the closest to
the query at each particular level, the search is continued.

The following figure shows a search tree for the clustered
collection of Fig. 6.
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Fig. 7. Search tree for clustered codebook of Fig. 6.

Multilevel cluster search, based on a hierarchical cluster
structure as illustrated in Fig. 7, has been shown to provide sig-
nificant improvements in retrieval efficiency [10]. Accordingly,
such a search applied to the retrieval of code-vectors in a VQ
system implies very rapid coding. The results in the following
section verify that the coding efficiency of a VQ system built
upon a hierarchically organized codebook can be improved up
to 85%.

IV. EXPERIMENTAL RESULTS

The experiments presented in this section were conducted
in order to compare the performance of an NN algorithm for
the mse minimization [in our case hard competitive learning
(HCL)] versus an NN algorithm for the discovery of input
data clusters (in particular modified ART2) for the purpose
of image compression. One may argue that the algorithms
chosen were not the only representatives of their groups. (For
example, -means [13] is another well-known representative
of clustering algorithms for the mse minimization. It can be
employed either in “batch” or “on-line” version. While the
batch version typically provides for stable but computationally
more expensive learning, the on-line version is essentially
equivalent to HCL.) However, the purpose of the experiments
was not to investigate subtle improvements by variants of the
same learning concept, but to explore the principal advantages
of one learning concept over the other.

The software simulation of the HCL algorithm was performed
using the Matlab Neural-Network Toolbox [11]. In each case
the network was trained for 5000 iterations, although it was ob-
served that for most cases learning stabilization was obtained
after less than 3000 iterations. The learning rate was 0.1. Some
experiments with a larger learning rate failed to provide sensible
results, while smaller learning rates did not contribute to better
compression.

The simulation of the modified ART2 algorithm was mainly
based on our software developed as explained in [2]. (Initially,
the software simulation of modified ART2 was just an ingre-
dient of a larger composite autonomous agent. The agent was
implemented in Java, and built for the purpose of Web-page
classification employing NN. However, due to its universal
nature, it was possible to extract the core algorithm from the
overall system, and apply it to any VC task.) In all cases the
dynamic parameter ( ) was set to 0.5. By experimenting with
a number of different cases this value was initially determined
to provide clustering that is perfectly stable and does not
depend on the initial ordering of training vectors.

Fig. 8. Image with near uniform background together with a few important
textual details (original size:256� 256 pixels).

All images used consisted of 256256 pixels. The images
were partitioned into subimages of 8 8 pixels. Thus, in all
cases, input- and code-vectors were 64-dimensional. In both
classes of experiments, based on HCL and modified ART2, the
ordering of input vectors was randomized prior to their utiliza-
tion in the learning process. For each image compressed the
corresponding mse error and SNR with respect to the original
image were calculated, using the following expressions:

mse (22)

SNR
mse

(23)

where and are image width and length, and
are the original and reconstructed pixel intensity,

respectively.

A. Experiment 1

The first experiment is related to the image given in Fig. 8. As
can be observed, the image consists of a large, gradually shaded
background, with a few important details given in the form of
letters (text). (This type of images often can be seen in various
Web pages, and therefore their compression may be particularly
important from the point of view of Internet communications.)

Figs. 9(a)–(f), and 10(a)–(f) are the versions of Fig. 8
following compression and decompression, produced by the
modified ART2 and HCL algorithms respectively, for different
number of nodes—quantization levels. (Note: in the remainder
of the paper the two terms,nodeand quantization level,will
be used interchangeably, since there is a clear conceptual
“one-to-one” relationship between what these terms represent
in the case of VQ employing NNs.) It is observed that the
best quality of decompressed data, according to the human
perception of image quality, is obtained by the modified ART2
with 128 nodes [Fig. 9(f)].

However, by comparing the overall performance of the two
algorithms, it may be observed that in almost all cases (for each
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. (a) VQ using modified ART2—four quantization levels, comp. rate: 0.0312 bits/pixel, comp. ratio: 256 : 1. (b) VQ using modified ART2—eight
quantization levels, comp. rate: 0.0468 bits/pixel, comp. ratio: 170.6 : 1. (c) VQ using modified ART2—16 quantization levels, comp. rate: 0.066 25 bits/pixel,
comp. ratio: 128 : 1. (d) VQ using modified ART2—32 quantization levels, comp. rate: 0.0781 bits/pixel, comp. ratio: 102.4 : 1. (e) VQ using modified ART2—64
quantization levels, comp. rate: 0.0937 bits/pixel, comp. ratio: 85.3 : 1. (f) VQ using modified ART2—128 quantization levels, comp. rate: 0.1093 bits/pixel,
comp. ratio: 73.1 : 1.

particular number of nodes) modified ART2 outperforms HCL.
This is because HCL, due to its mse minimization, is depen-
dent on input data distribution density. Accordingly, in the case
of Fig. 8, HCL concentrates most of the nodes within or close
to the input vectors related to the background, since, statisti-
cally, these represent the most plentiful data. That portion of
the image, however, apparently does not contain a significant
amount of valuable information, and therefore high decompres-
sion quality of the background obtained in Fig. 10(d)–(f) is not

of significant importance from the point of view of human per-
ception.

In contrast to HCL, the modified ART2 algorithm allocates
very few nodes to the background. Note that in all the decom-
pressed versions up to 128 quantization levels it remains com-
pletely uniform (nonshaded), and therefore considerably dif-
ferent from the original. However, the textual portion of the
image, which contains all valuable information, in spite its small
direct statistical weight occupies most of the nodes. Therefore,
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. (a) VQ using HCL—four quantization levels, comp. rate: 0.0312 bits/pixel, comp. ratio: 256 : 1. (b) VQ using HCL—eight quantization levels, comp. rate:
0.0468 bits/pixel, comp. ratio: 170.6 : 1. (c) VQ using HCL—16 quantization levels, comp. rate: 0.066 25 bits/pixel, comp. ratio: 128 : 1. (d) VQ using HCL—32
quantization levels, comp. rate: 0.0781 bits/pixel, comp. ratio: 102.4 : 1. (e) VQ using HCL—64 quantization levels, comp. rate: 0.0937 bits/pixel,comp. ratio:
85.3 : 1. (f) VQ using HCL—128 quantization levels, comp. rate: 0.1093 bits/pixel, comp. ratio: 73.1 : 1.

with just 64 quantization levels modified ART2 appears to be
capable of providing almost 100% accurate reconstruction of
the primary (textual) information [Fig. 9(e)].

It is interesting to observe that although HCL attempts to
minimize the mse within the reference vector space, it does
not always ensure an equally efficient performance on the pixel
level. Moreover, it seems that for a sufficient number of quan-
tization levels modified ART2 provides a considerably lower
pixel-to-pixel mse (Table I), i.e., higher SNR (Table II).

B. Experiment 2

The second experiment is related to the well-known Lena
image (Fig. 11).

Figs. 12 and 13 correspond to the compression obtained with
the two algorithms using 256 quantization levels. A careful
inspection of these images leads to the conclusion that HCL
provides evenly distributed distortion, and therefore, a better
quality on average. On the other hand, although modified ART2
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TABLE I
mseFOR DECOMPRESSEDVERSIONS OFFIG. 8

TABLE II
SNRFOR DECOMPRESSEDVERSIONS OFFIG. 8

Fig. 11. Lena image.

Fig. 12. VQ of Lena image using modified ART2, 256 quantization levels,
comp. rate: 0.125 bits/pixel, comp. ratio: 64 : 1, mse: 122.5710, SNR: 20.0655.

is not as efficient as HCL regarding the areas of slowly varying
shading without much entropy or information (for example the
shoulder, the hat, etc.), it successfully preserves all important
details. Accordingly, Fig. 12 appears to be more appropriate
for recognition of important features than Fig. 13.

Figs. 14 and 15 are the decompressed versions of the Lena
image produced by modified ART2 and HCL with 512 nodes

Fig. 13. VQ of Lena image using HCL, 256 quantization levels, comp rate:
0.125 bits/pixel, comp. ratio: 64 : 1, mse: 382.4340, SNR: 15.1238.

Fig. 14. VQ of Lena image using modified ART2, 512 quantization levels,
comp. rate: 0.1406 bits/pixel, comp. ratio: 56.8 : 1, mse: 17.9365, SNR: 28.4120.

Fig. 15. VQ of Lena image using HCL, 512 quantization levels, comp rate:
0.1406 bits/pixel, comp. ratio: 56.8 : 1, mse: 319.4959, SNR: 15.9047.

(quantization levels), respectively. While Fig. 14 is undoubtedly
a significant improvement over Fig. 12, it appears that Fig. 15
is almost of the same quality as Fig. 13 (however, note that the
mse of Fig. 15 is actually lower than that of Fig. 13). The per-
formance mainly results from the mse minimization property of
the algorithm. However, there are some indications that for this
particular image and for a large number of nodes (over 256),
HCL becomes trapped in a local minimum.
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TABLE III
CODING OF LENA IMAGE USING MULTILEVEL SEARCH STRATEGY

Fig. 16. Clown image.

From a practical point of view, serial search coding (see Sec-
tion III-A of an 256 256 pixel image, based on 8 8 pixel
subimages, requires each of the 1024 subimages to be matched
against each of the code (reference) vectors. Thus, if there are
512 quantization levels, it implies 524 288 comparisons in total.
In order to provide a more efficient coding, a multilevel coding
strategy is applied.

In particular, 512 reference vectors that correspond to the
Lena image, obtained by the modified ART2, are used as the
“root” (zeroth level) of a five-level dendogram (search tree).
This means that, as described in Section III-A, these 512 are
first grouped into 256 clusters (first level), with each cluster
represented by the cluster centroid. Then, the 256 centroids are
further grouped into new 128 clusters, and similar procedures
follow for the next 64, i.e., 32 clusters. Accordingly, the search
for the reference vector (among the 512) closest to a new input
vector that appears at the input of a VQ coder, begins from the
highest level of the tree. Table III shows that with the five-level
dendogram the complete coding of the Lena image is performed
in just 18.75% of the time required when a serial search strategy
is applied. Also, from Table III, it can be observed that fewer
levels in the dendogram implies a less efficient coding perfor-
mance.

Note: Table III does not provide the exact coding times in sec-
onds. Instead, it provides the number of required comparisons
(input vectors-to-code vectors) as a valid measure of coding ef-
ficiency. We intentionally avoid using “time in seconds,” since
with this performance metric the same algorithm could suggest
significantly different results depending on the specific machine
used for simulation. Also, note that in Table III a 1-level search
strategy implies that the tree consists of the zeroth level only, a
two-level search strategy implies the zeroth and first level, etc.

Fig. 17. VQ of Clown image using modified ART2, 256 quantization levels,
comp. rate: 0.125 bits/pixel comp. ratio: 64 : 1, mse: 351.8208, SNR: 15.8068.

Fig. 18. VQ of Clown image using HCL, 256 quantization levels, comp rate:
0.125 bits/pixel, comp. ratio: 64 : 1, mse: 664.8278, SNR: 13.0429.

C. Experiment 3

The main purpose of this experiment was to investigate the
quality of a decompressed image whose compression is based
on the codebook obtained for some other image.

Figs. 19 and 20 are the decompressed versions of the familiar
Clown image (Fig. 16) based on the codebooks obtained for the
Lena image using modified ART2 and HCL, respectively (see
Figs. 17 and 18). According to the mse and SNR measures, the
modified ART2 algorithm again produces an image of better
quality than HCL. However, the decision as to which algorithm
in this case provides better results from the point of view of
human perception, is best left to the reader.

D. Experiment 4

The fourth experiment provides a comparison between VQ
based on modified ART2 and the widely used JPEG algorithm,
in terms of compression quality and efficiency.

In general, the main principles of vector quantization and
JPEG compression are substantially different. As explained in
Section I, VQ requires for each subimage (input data block) the
nearest code-vector to be selected, and only the index of that
code-vector is transmitted through the channel (Fig. 1). Since
the overall sizes of the codebook, code-vectors, and image itself
are known in advance, it is possible to predict the corresponding
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Fig. 19. Compression of Clown image based on the codebook obtained
for Lena Image using modified ART2, 256 quantization levels, comp. rate:
0.1406 bits/pixel, comp. ratio: 56.8 : 1, mse: 918.1306, SNR: 11.6410.

Fig. 20. Compression of Clown image based on the codebook obtained for
Lena image using HCL, 256 quantization levels, comp rate: 0.1406 bits/pixel,
comp. ratio: 56.8 : 1, mse: 1180.2129, SNR: 10.5504.

compression rate and ratio in any particular case. In other words,
the total amount of information which has to be sent through the
channel when utilizing a VQ compression technique is

compressedinformation
imagesize

subimagesize
codevectorsize[bits] (24)

However, in VQ techniques the quality of a decompressed
image cannot be directly controlled or predicted, and it mainly
depends on the nature of the codebook used. In particular, good
quality can be expected if the codebook has been obtained for
an image similar to the image which is the subject of com-
pression. Otherwise, the decompressed image may significantly
differ from the original, or it may appear to be very noisy, even
though the actual compression ratio may not be very large.

The JPEG compression algorithm, on the other hand, is based
on the following principles. As each 8 8 subimage is encoun-
tered, its 64 pixels are “level shifted” by , where is the
maximum number of gray levels. The discrete cosine transform
(DCT) coefficients of the block are then computed, quantized
(normalized), and coded using a variable length code scheme,
as presented in Fig. 21. (For more details on JPEG see [8], and
[12].)

Fig. 21. JPEG compression scheme.

Fig. 22. Decompressed JPEG version of Fig. 8 (compressed filesize: 1660
bytes).

Fig. 23. Decompressed JPEG version of Lena image (compressed filesize:
1639 bytes).

In contrast to the VQ-based compression, JPEG provides
better control over the quality of decompressed images, pri-
marily through the adjustment of the quantization step sizes
(Fig. 21). Thus, for example, large quantization steps mostly
result in substantial compression and significantly reduced
quality, with most of the high-frequency coefficients removed.
Small quantization steps imply the opposite. However, since
the quantization is followed by the encoding process, which
introduces some additional compression of the lossless type,
it is difficult if not impossible to predict the exact size of the
resulting compressed images [8]. In other words, with the
JPEG compression algorithm it becomes practically impossible
to predict the precise value of the compression ratio required.
Therefore, most of the existing image editing tools provide their
own subjective compression scales, enabling the users to only
qualitatively control the actual size and quality of compressed
JPEG files.

Figs. 22–24 were produced by the Matlab Image Processing
Toolbox, with the JPEG quality factor set to 2. (In general, this
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Fig. 24. Decompressed JPEG version of Clown image (compressed filesize:
1783 bytes).

TABLE IV
FILESIZES OFCOMPRESSEDIMAGES PRODUCEDUSING JPEG ALGORITHM

TABLE V
FILESIZES OFCOMPRESSEDIMAGES PRODUCEDUSING MODIFIED ART2

Fig. 25. Bird image (filesize: 69 902 bytes).

factor can take any value in the range 0–100, where 0 implies the
worst quality but the most intensive reduction in filesize, while
100 implies the best quality and no reduction in filesize.) In our
case the quality factor of 2 resulted in images of sizes close to
1024 [bytes] (Table IV). Therefore, an adequate quality-related
comparison of these images with the corresponding images pro-
duced using VQ based on modified ART2 (as given in Table V)
was possible.

Even a very superficial inspection suggests that Figs. 9(f),
12, and 16 are of considerably better quality than Figs. 22–24,
respectively. In general, this implies that VQ based on modified

Fig. 26. Decompressed JPEG version of Bird image (compressed filesize:
1358 bytes), comp. ratio: 51.5 : 1.

Fig. 27. VQ of Bird image using modified ART2, 64 quantization levels,
comp. rate: 0.0937 bits/pixel, comp. ratio: 85.3 : 1.

Fig. 28. VQ of Bird image using modified ART2, 128 quantization levels,
comp. rate: 0.1093 bits/pixel, comp. ratio: 73.1 : 1.

ART2 can outperform the standard JPEG compression scheme
at comparable compression ratios provided the VQ codebooks
are appropriate to the images being compressed. Note that the
ratios in the above figures are well in excess of those normally
employed with JPEG.
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Fig. 29. Slope image (filesize: 69 706 bytes).

Fig. 30. Decompressed JPEG version of Slope image (compressed filesize:
1537 bytes), comp. ratio: 45.3 : 1.

Fig. 31. VQ of Slope image using modified ART2, 128 quantization levels,
comp. rate: 0.1093 bits/pixel, comp. ratio: 73.1 : 1.

E. Various Experiments

This section contains a series of decompressed images
(Figs. 25–40) obtained by experimenting with the JPEG
scheme and VQ based on modified ART2.

The main goal of the experiments was to provide a better
understanding of the features and compression capabilities of
modified ART2, and also to give ground for a more valid com-
parison against JPEG which is considered to be the most com-
monly used compression scheme on the Internet today. We hope

Fig. 32. VQ of Slope image using modified ART2, 256 quantization levels,
comp rate: 0.125 bits/pixel, comp. ratio: 64 : 1.

Fig. 33. Montage image (filesize: 70 514 bytes).

Fig. 34. Decompressed JPEG version of Montage image (compressed filesize:
1612 bytes), comp. ratio: 43.7 : 1.

the obtained results will motivate further investigations and a
wider use of modified ART2 for the purposes of image com-
pression.

V. CONCLUSION AND FUTURE WORK

In this paper, the main disadvantages of most of the existing
VQ techniques based on the mse minimization principle have
been described. The theoretical discussion and reported results
have suggested the main benefits of utilizing the modified ART2
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Fig. 35. VQ of Montage image using modified ART2, 256 quantization levels,
comp. rate: 0.125 bits/pixel, comp. ratio: 64 : 1.

Fig. 36. VQ of Montage image using modified ART2, 512 quantization levels,
comp rate: 0.1406 bits/pixel, comp. ratio: 56.9 : 1.

Fig. 37. Casablanca image (filesize: 71 212 bytes).

algorithm over the other NN algorithms for the purpose of code-
book creation. It has been proven that modified ART2, due to
its ability to preserve fine details in decompressed images, is ca-
pable of providing particularly satisfactory results when dealing
with text-based images, i.e., images of excessively nonuniform
distribution. Some situations in which modified ART2 outper-
formed the well-known JPEG compression algorithm have also
been reported.

Although based on the results presented in the paper modified
ART2 clearly outperform a typical representative of mse-mini-

Fig. 38. Decompressed JPEG version of Casablanca image (compressed
filesize: 1706 bytes), comp. ratio: 41.7 : 1.

Fig. 39. VQ of Casablanca image using modified ART2, 256 quantization
levels, comp. rate: 0.125 bits/pixel, comp. ratio: 64 : 1.

Fig. 40. VQ of Casablanca image using modified ART2, 512 quantization
levels, comp. rate: 0.106 bits/pixel, comp. ratio: 56.9: 1.

mizing neural networks (HCL), we are not claiming its superi-
ority over all other classes of NN algorithms. The performance
of NN algorithms based on error criteria other than mse is still
to be investigated.

Another area of possible future research is related to the cre-
ation and size of codebook in the general case of vector quan-
tization for image compression purposes. In particular, at the
present stage the main obstacle toward a mass implementation
of VQ techniques, including VQ based on modified ART2 as
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described in this paper, seems to be the lack of a standardized
codebook. Accordingly, most VQ models assume that a code-
book is created for each image compressed, and the knowl-
edge of the given codebook is immediately present at the re-
ceiver side, typically at no cost. Of course, this assumption is
not entirely realistic, and clearly such a codebook can be ex-
pected to provide a noticeably better performance when used
in the compression and decompression of the original than of
an arbitrary image. One possible solution to the above problem
is the utilization of a larger universal codebook, which would
ensure equally good performance for a wide class of images.
However, every increase in the size of the codebook results in
an increase in the number of bits per each code-vector identifier.
Accordingly, with a larger codebook lower compression ratios
are to be obtained. Still, it should be noted that the number of
bits per code-vector identifier, and therefore the size of com-
pressed images, only grows logarithmically with the size of the
universal codebook. Thus, the idea of quite large universal code-
books should be entertained (with copies at all sites as in JPEG
encoders/decoders) perhaps with progressively larger universal
codebooks employed when quality requirements are demanded.
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